Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vopr Virusol ; 67(5): 439-449, 2022 11 19.
Article in Russian | MEDLINE | ID: covidwho-2268455

ABSTRACT

INTRODUCTION: The variability of SARS-CoV-2 appeared to be higher than expected, the emergence of new variants raises concerns. The aim of the work was to compare the pathogenicity of the Wuhan and BA.1.1/Omicron variants in BALB/c mice and Syrian hamsters. MATERIALS AND METHODS: The study used strains of SARS-CoV-2: Dubrovka phylogenetically close to Wuhan-Hu-1, and LIA phylogenetically close to Omicron, BALB/c mice, transgenic mice B6.Cg-Tg(K18-ACE2)2Prlmn/HEMI Hemizygous for Tg(K18-ACE2)2Prlmn, Syrian golden hamsters. Animals were infected intranasally, pathogenicity was estimated by a complex of clinical, pathomorphological and virological methods. RESULTS: Comparative studies of SARS-CoV-2 Dubrovka and LIA strains on animal models demonstrated their heterogeneous pathogenicity. In parallel infection of BALB/c mice with Dubrovka and LIA variants, the infection proceeded without serious clinical signs and lung damage. Infection with the LIA strain resulted to a systemic disease with a high concentration of viral RNA in the lungs and brain tissues of animals. The presence of viral RNA in mice infected with the Dubrovka strain was transient and undetectable in the lungs by day 7 post-infection. Unlike the mouse model, in hamsters, the Dubrovka strain had a greater pathogenicity than the LIA strain. In hamsters infected with the Dubrovka strain lung lesions were more significant, and the virus spread through organs, in particular in brain tissue, was observed. In hamsters infected with the LIA strain virus was not detected in brain tissue. CONCLUSION: The study of various variants of SARS-CoV-2 in species initially unsusceptible to SARS-CoV-2 infection is important for monitoring zoonotic reservoirs that increase the risk of spread of new variants in humans.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Mice , Angiotensin-Converting Enzyme 2 , Disease Models, Animal , Mice, Inbred BALB C , RNA, Viral/genetics , SARS-CoV-2/genetics
2.
Zhurnal Mikrobiologii Epidemiologii i Immunobiologii ; 99(4):397-409, 2022.
Article in Russian | Scopus | ID: covidwho-2081559

ABSTRACT

Introduction. The emergence of new epidemiologically significant variants of SARS-CoV-2 has shifted emphasis to development of a live vaccine, which would be able to provide protection against a wide range of antigenic variants of the virus. The aim of the study was to obtain SARS-CoV-2 variants attenuated through cold adaptation and to provide their biological characterization. Materials and methods. The Dubrovka laboratory strain of SARS-CoV-2 and its variants were cultured on Vero and Calu-3 cells. The virus quantification was performed by virus titration in Vero cells and by real-time reverse transcription-polymerase chain reaction. SARS-CoV-2 virions were analyzed using transmission electron microscopy. Genome sequences of the virus were identified by nanopore sequencing. The attenuation (att) phenotype of SARS-CoV-2 variants was identified using Syrian hamsters as an animal model for COVID-19. Results. Cold-adapted (ca) SARS-CoV-2 variants – Dubrovka-ca-B4 and Dubrovka-ca-D2 were produced by continued passaging of the Dubrovka strain in the Vero cell culture at the temperature being gradually decreased to 23ºC and by subsequent cloning. Up to 20 nucleotide substitutions and 18 amino acid substitutions were detected in genomes of ca-variants. Ca-variants, as distinct from the parent Dubrovka strain, actively replicated at 23ºC, while the Dubrovka-ca-D2 variant had a temperature-sensitive (ts) phenotype (did not replicate at 39ºC). Ca-variants of the virus replicated poorly at 37ºC in the Calu-3 human lung cell culture, which, along with the ts-phenotype, can be a marker of virus attenuation for humans. In the intranasally infected Syrian hamsters, ca-variants of the virus demonstrated an attenuation phenotype: they did not cause loss of appetite, fatigue, drowsiness, did not slow down weight gain, replicating much more slowly in the lungs and brain compared to the virulent Dubrovka strain. Conclusion. The obtained attenuated SARS-CoV-2 ca-variants, Dubrovka-ca-B4 and Dubrovka-ca-D2, should be studied further as candidate vaccine strains for a live attenuated vaccine against COVID-19. © Team of authors, 2022.

3.
Arch Virol ; 167(11): 2181-2191, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1941764

ABSTRACT

Vaccination against COVID-19 is the most effective method of controlling the spread of SARS-CoV-2 and reducing mortality from this disease. The development of vaccines with high protective activity against a wide range of SARS-CoV-2 antigenic variants remains relevant. In this regard, evaluation of the effectiveness of physical methods of virus inactivation, such as ultraviolet irradiation (UV) of the virus stock, remains relevant. This study demonstrates that the UV treatment of SARS-CoV-2 completely inactivates its infectivity while preserving its morphology, antigenic properties, and ability to induce the production of virus-neutralizing antibodies in mice through immunization. Thus, the UV inactivation of SARS-CoV-2 makes it possible to obtain viral material similar in its antigenic and immunogenic properties to the native antigen, which can be used both for the development of diagnostic test systems and for the development of an inactivated vaccine against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ultraviolet Rays , Vaccines, Inactivated
4.
Antibiotiki i Khimioterapiya ; 66(5-6):4-10, 2021.
Article in Russian | EMBASE | ID: covidwho-1884987

ABSTRACT

Introduction.The COVID-19 pandcmic has stimulated the search for drugs with specific antiviral activity against the new pathogenic strain of the SARS-CoV-2 coronavirus. First of all, scientific search was aimed at studying drugs with already proven efficacy against influenza and ARVI. The aim of this worfc was to study the antiviral activity of Cytovir∗-3 in vitro in relation to the cytopathogenic effect of the SARS-CoV-2 virus. Material and methods. The antiviral activity of the drug Cy- tovir∗-3 against the SABS-CoV-2 virus was studied in experimental models in vitro on Vero CCL81 cell culture (ATCC).The maximum tolerated concentration and the 50% cytotoxic dose were determined using a quantitative microculture tetra- zolium test assay to calculate the working range of the concentrations of the test drug. Results and discussion. As a result of the study, it was shown that the greatest activity of the drug was manifested when it was added to the cells 24 hours before and 1 hour and 24 hours after viral infection, the inhibition level reached 53% (>IC50) at the drug concentrations of 105,55, and 85 fig/ml, respectively. Cytovir∗-3 suppressed the viral activity of SARS-CoV-2 in the dose range from 10 pg/ml to 105 pg/ml under the indicated infection conditions. It was found that the drug did not exhibit cytotoxic effects on the Vero cell culture in the range of antiviral doses. Conclusion. The antiviral activity of Cytovir∗-3 against the SARS-CoV-2 virus has been proven due to the achievement of IC50, which is below the maximum tolerated dose of 149 pg/ml.

5.
Vopr Virusol ; 66(4): 241-251, 2021 09 16.
Article in English, Russian | MEDLINE | ID: covidwho-1431289

ABSTRACT

COVID-19 has killed more than 4 million people to date and is the most significant global health problem. The first recorded case of COVID-19 had been noted in Wuhan, China in December 2019, and already on March 11, 2020, World Health Organization declared a pandemic due to the rapid spread of this infection. In addition to the damage to the respiratory system, SARS-CoV-2 is capable of causing severe complications that can affect almost all organ systems. Due to the insufficient effectiveness of the COVID-19 therapy, there is an urgent need to develop effective specific medicines. Among the known approaches to the creation of antiviral drugs, a very promising direction is the development of drugs whose action is mediated by the mechanism of RNA interference (RNAi). A small interfering RNA (siRNA) molecule suppresses the expression of a target gene in this regulatory pathway. The phenomenon of RNAi makes it possible to quickly create a whole series of highly effective antiviral drugs, if the matrix RNA (mRNA) sequence of the target viral protein is known. This review examines the possibility of clinical application of siRNAs aimed at suppressing reproduction of the SARS-CoV-2, taking into account the experience of similar studies using SARS-CoV and MERS-CoV infection models. It is important to remember that the effectiveness of siRNA molecules targeting viral genes may decrease due to the formation of viral resistance. In this regard, the design of siRNAs targeting the cellular factors necessary for the reproduction of SARS-CoV-2 deserves special attention.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , RNA Interference , RNA, Small Interfering/therapeutic use , SARS-CoV-2 , Animals , COVID-19/genetics , COVID-19/metabolism , Disease Models, Animal , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL